
What is MVCC and
why should I care
about it?

Patrick Stählin, PGConf.de 2025

1

 Multi

 Version

 Concurrency

 Control

Promise of PG (ACID)
● Changes are atomic
● Data is consistent
● Changes are isolated
● Data is stored durable

2

Multi
There can be multiple copies of a tuple (“rowˮ) that can be valid at
the same time.

ID (PK) Name

1 Maier

1 Meier

1 Meyer

3

Version
All tuples have an id (ctid). Additionally each tuple has a version
number from which it starts to be visible (xmin) and from which it
will no longer be (xmax).

xmin xmax ID Name

1 3 1 Maier

3 7 1 Meier

7 0 1 Meyer

4

Concurrency Control
The protocol allows concurrent access and has a couple of built in
rules. To identify which tuples are visible, each transaction gets a
transaction number (txid_current).

There are a couple of rules that are followed to determine the
visibility of a tuple. Those rules are dependent on the isolation-level
currently set.

xmin xmax ID Name

1 3 1 Maier

3 7 1 Meier

7 0 1 Meyer

txid_current == 7

5

Pros and cons of MVCC

● Data- and I/O-intense
● You need to clean up
● Read access gets complicated

● Doesnʼt need locking
● Changes are easy
● Itʼs an optimistic algorithm

6

Visibility of tuples

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2 txid

t14,5

t25,0

txid_current()

visible invisible

7

Visibility of tuples

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2 txid

t14,5

t25,0

txid_current()

visible invisible

8

MVCC
● User data is immutable (write-only)
● DELETE only updates xmax
● UPDATE ist a DELETE followed by an INSERT
● Empty updates also create new tuples

9

Digression: How do we store things
● Tables are single files (up to 1 GB
● Big tuples will not reside completely in those files but in extra

ones TOASTed)
● Indices also get one file each
● Files contain many pages 8 kB

10

https://www.postgresql.org/docs/current/storage-page-layout.html

Heap Page Layout

11

https://www.postgresql.org/docs/current/storage-page-layout.html

https://www.postgresql.org/docs/current/storage-page-layout.html

Page Item Layout

12

https://www.postgresql.org/docs/current/storage-page-layout.html

https://www.postgresql.org/docs/current/pageinspect.html

Page Item Layout

Most of those fields are queryable:

defaultdb=> select xmin, xmax, ctid, * from jobs;
xmin | xmax | ctid | job_id | done
-------+------+-------+--------+------
28173 | 0 | (0,1) | 1 | f
28185 | 0 | (0,2) | 2 | f
(2 rows)

defaultdb=>

If you have access to pageinspect, you can read all the fields.

13

https://www.postgresql.org/docs/current/pageinspect.html

https://www.postgresql.org/docs/current/wal-intro.html

Write Ahead Log (WAL)

● Crash-Recovery
● Replication
● Point-in-Time-Recovery

14

https://www.postgresql.org/docs/current/wal-intro.html

Example

txid_current = 12

BEGIN; INSERT INTO t VALUES (‘A’); COMMIT;

Tuple ID xmin xmax cid ctid data

15

Example

txid_current = 12

BEGIN; INSERT INTO t VALUES (‘A’); COMMIT;

Tuple ID xmin xmax cid ctid data

1 12 0 0 (0,1) A

16

Example

txid_current = 13

BEGIN; UPDATE t SET data = ‘B’ WHERE data = ‘A’; COMMIT;

Tuple ID xmin xmax cid ctid data

1 12 0 0 (0,1) A

17

Example

txid_current = 13

BEGIN; UPDATE t SET data = ‘B’ WHERE data = ‘A’; COMMIT;

Tuple ID xmin xmax cid ctid data

1 12 13 0 (0,2) A

2 13 0 0 (0,2) B

18

Example

txid_current = 14

BEGIN; DELETE FROM t WHERE data = ‘B’; COMMIT;

Tuple ID xmin xmax cid ctid data

1 12 13 0 (0,2) A

2 13 0 0 (0,2) B

19

Example

txid_current = 14

BEGIN; DELETE FROM t WHERE data = ‘B’; COMMIT;

Tuple ID xmin xmax cid ctid data

1 12 13 0 (0,2) A

2 13 14 0 (0,2) B

20

Use-case 1

● Job-Processor runs periodically
● Updates all jobs from the past and marks them as done

21

Use-case 1

Schema:
CREATE TABLE jobs (
 job_id SERIAL PRIMARY KEY,
 done bool DEFAULT ‘f’,
 scheduled_for TIMESTAMP DEFAULT NOW()
);

Job:
at_now = SELECT now();
SELECT * FROM WHERE done = ‘f’ AND scheduled_for < ?:at_now;
[...]
UPDATE jobs SET done = ‘t’ where scheduled_for < ?:at_now;

22

Use-case 1

=> UPDATE jobs SET done = ‘t’ where scheduled_for < ?:at_now;
10000000 rows affected
=>

23

Use-case 1, too many UPDATEs

=> UPDATE jobs SET done = ‘t’ where scheduled_for < ?:at_now;
10000000 rows affected
=>

● Almost each tuple gets a new version
● Those changes are written to WAL files
● Backup grows as there is more table bloat
● Backup grows as you need to keep the WAL files for PITR Point-in-time

Recovery)
● Replication lag may go through the roof
● Size on disk >> size of data

24

Visibility of tuples II

● Running transactions have sequential txids
● Transactions may be aborted
● ⇒ Simple xmin, xmax filter doesnʼt work

Also, depending on the isolation-level we need additional rules

25

Visibility of tuples II

Commit-Log (xact log)

txid 1 2 3 4 5

state COMMITTED IN_PROGRESS ABORTED COMMITTED SUB_COMMITED

26

Visibility of tuples II

=> SELECT pg_current_snapshot()
2:6:2,3

2 ⇒ xmin, first txid that is still active
6 ⇒ xmax, first txid that is not yet active
2,3 ⇒ pending transactions

The snapshot gets calculated when you execute the first statement in your
transaction, depending on the isolation level.

27

Visibility of tuples II

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2 txid

t14,5

t25,0

txid_current()

visible invisible

28

Visibility of tuples II

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2 txid

t14,5

t25,0

txid_current()

visible invisible

=> SELECT pg_current_snapshot()
1:6:2,3

29

Visibility of tuples II

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2 txid

t14,5

t25,0

txid_current()

maybe
visible

invisible

=> SELECT pg_current_snapshot()
1:6:2,3

30

Visibility of tuples II

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2 txid

t14,5

t25,0

txid_current()

maybe
visible

invisible

=> SELECT pg_current_snapshot()
1:6:2,3

31

Use-case 2

● Job-Processor still runs periodically
● New design, weʼre now updating jobs one-by-one

32

Schema:
CREATE TABLE jobs ([...]);

Job:
at_now = SELECT now();
SELECT id FROM WHERE done = ‘f’ AND scheduled_for < at_now
FOR UPDATE;

BEGIN;
[for each job]
UPDATE jobs SET done = ‘t’ WHERE job_id = ?:job_id;
COMMIT;

Use-case 2

33

● Updates single rows
● Jobs will still get written twice
● Long running transaction on jobs, maybe blocking other things
● Global xmin stays pinned due to the …FOR UPDATE clause

Use-case 2

34

● Locking of tables
● Makes cleanup of bloat impossible
● May also lock writes/updates of jobs

Use-case 2, long transactions

35

● Dead-tuple removal (also on Indices)
● xact cleanup (txid ↔ state mapping)
● Freeze txids (t_infomask |= XMIN_FROZEN)

Freezes tuples that may be removed due to txid-wraparound
● Updates FSM Free-Space-Map), VM Visibility-Map) und statistics
● Needs a ShareUpdateExclusiveLock
● Empty pages will only removed by VACUUM FULL

Cleaning up (VACUUM)

36

● Non-reachable tuples will get removed from pages (xmax < global xmin)
● Heap-Pages get defragmented
● References from indices to dead-tuples are being removed
● Free-Space-Map FSM) und Visibility-Map VM) get updated

Dead-tuple removal

37

Conclusion

38

● Every UPDATE will write a new tuple
● VACUUM is very important
● Keep your transactions (and connections) short lived

○ transaction_timeout PG 17 and up)
○ idle_in_transaction_session_timeout

Thank You!

Senior Developer, Aiven

Aiven PostgreSQL® Team

patrick.staehlin@aiven.io

Patrick Stählin

https://www.linkedin.com/in/patrickstaehlin

39

@packi.chBsky

References

● https://www.interdb.jp/pg/pgsql05.html
● https://habr.com/en/companies/postgrespro/articles/477648/
● https://www.postgresql.org/docs/current/storage-page-layout.

html

40

https://www.interdb.jp/pg/pgsql05.html
https://habr.com/en/companies/postgrespro/articles/477648/
https://www.postgresql.org/docs/current/storage-page-layout.html
https://www.postgresql.org/docs/current/storage-page-layout.html

